
Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

1 

AGILE SOFTWARE DEVELOPMENT APPLICATIONS TO ERP: DISCUSSION AND 
ILLUSTRATION USING DYNAMICS AX 

Bojan Jovicic 
IT Manager, DELTA SPORT 

Milentija Popovica 7v, 11070 Novi Beograd, Srbija 
+381 11 201 2840 or bojan.jovicic@deltasport.com 

  
Todd Schultz 

Hull College of Business, Augusta State University 
Augusta, GA  30904 

+1 706 667 4534 or tschultz@aug.edu 
 

Dragan Djuric 
School of Computing and Information Systems, Athabasca University 

Athabasca, AB T9S 3A3 Canada 
+1 604 569 8515 or  

dragang@athabascau.ca 

Abstract.  This  paper  analyzes  the  technical  aspects  of  ERP  systems  and  their  connection with  agile 
methodologies, a crucial combination especially  in times of economic crisis. ERP system deployments 
demand resolution to thousands of business process questions and the supporting databases and code 
base usually have huge numbers of tables and related classes. The complexity is clearly a challenge to 
manage especially when applying customizations and configurations. We describe how an ERP system’s 
technical components can be classified  from several viewpoints  to    identify the ones most worthy of 
investing our time in improving. An upgrade can be worth as much as one‐thirt of the initial investment 
and this agile approach has helped us achieve a productive ERP system development environment, and 
it has enabled us to perform an ERP system upgrades effectively sometimes skipping an entire version. 
This provides that an effective connection between ERP deployemnt and agile software can be made to 
work. 

INTRODUCTION 

Agile methodologies are firmly established in software development but there is very little work on applying 
agile Enterprise Resource Planning (ERP) systems deployments and upgrades. ERP systems connect most of the 
departments of an enterprise, supporting the information flow inside the organization, and also connecting it 
with external partners. As such, these systems can be extremely large and complex.  

In its Sure Step methodology and supporting assets, Microsoft provides for an agile project type. It includes 
tools to help manage the agile collection and articulation of business processes and “promotes a collaborative 
process between the resources that own and specify the requirements for the solution and the resources 
responsible for the development and rollout of the solution.” (Shankar, 2011) The agile project type was 
introduced in the Sure Step 2010 release to facilitate development and rollout of of solutions to customers 
expecting to use Microsoft Dynamics as a platform and “customize the solution to their specific needs”. This is 
an excellent tool for high-level managemnt of the processes but our contribution supplements such a 
methodology with identification of specific modules for customization. 

Our main results are illustration of opportunities for ERP systems upgrades to take advantage of agile 
development technique to provide a more methodological approach to ERP systems deployment and 
maintenance. This paper will illustrate a technical perspective for analysis of ERP systems and connect the data 
from the analysis with future requirements for development and maintenance from an agile perspective.  

Before the current economic crisis companies were – perhaps – more ready to invest in technology to enable 
growth. Now there is more tendency to delay or very carefully enter new ERP projects. Even with identified 
need for an ERP system upgrade or change, companies are focused on maintaining current implementation. 
Using agile with ERP helps a company to easily maintain the current ERP implementation but support new 
requests and remain ready for an upgrade. It has even enabled doing an upgrade to second next major version of 
ERP (from version 3 to version 5) skipping one whole version, which is considered a very worthy move in ERP 
world. Section 2 introduces us to ERP systems and outlines the current state of the art in development, 
maintenance and upgrade of ERP systems. It also explains basic agile concepts. In section 3 quantitative 
analysis of the software engineering state of an ERP system is performed from different aspects and each of 



Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

2 

them is discussed. Section 4 connects this analysis with agile approach and explains the results that have been 
achieved using this approach. In the final section a summary of paper is presented.  

PREVIOUS WORK 

Agile software development has been growing steadily as methodology of choice for many organizations 
(Cockburn, Agile Software Development: The Cooperative Game (Agile Software Development Series), 2006). 
It comes in various forms including Extreme Programming, Scrum, Crystal and among others.  

Agile is considered as very effective approach in comparison to other more rigorous methodologies in terms 
of business performance, customer satisfaction and quality (Cockburn & Highsmith, Agile software 
development, the people factor, 2001). In same paper (Cockburn & Highsmith, Agile software development, the 
people factor, 2001) the authors state that agile excels in exploratory problem domains (extreme, complex, high-
change projects), and operates best in a people-centered, collaborative, organizational culture. However, it is not 
for all domains: imposing agile principles on process-centric, non-collaborative, optimizing organizations is 
likely to fail. 

Enterprise Resource Planning (ERP) systems are information systems which out-of-the-box cover most of 
the business needs of a typical enterprise. Since these systems originated from the manufacturing field (Wallace 
& Kremzar, 2001), this is usually this business area that is supported most. For some other areas there might be 
a need to customize the ERP system by modifying the existing functionalities or creating completely new ones 
(Markus & Tanis, 2000).  

There are only a few publications that tackle the issue of using agile with ERP systems. Reasons for this 
might be found in issues of agile application domain specification from (Cockburn & Highsmith, Agile software 
development, the people factor, 2001). There is also a confusion in research papers which try to connect agile 
and ERP. Most of them which address agile and ERP are referring to the agile property of ERP system in some 
context (e.g. using business rules to make the ERP system itself more agile in adapting to changes within the 
business) rather than trying to connect agile software development with ERP and show the challenges and 
possiblities. There are a significant number of papers highlighting ERP systems application in agile 
manufacturing as well. 

Some of the ERP systems that have the largest market share are shown and compared in Figure Figure 1 
which diagrams the systems on the two dimensions of completeness of vision and ability to execute. Another 
stratifications are to compare them by how they support the key functional areas or an alternate comparison by 
the technical aspects of the ease of maintaining ERP systems (Jovicic & Vlajic, 2009). 

 
Figure 1: Gartner’s Magic Quadrant for ERP for Product-Centric Midmarket Companies as of December 2010 
(Magic Quadrant for ERP for Product-Centric Midmarket Companies, 2010) 



Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

3 

As a growing number of companies adopt ERP systems, ERP systems implementation and upgrades are 
identified as one of the top five IT priorities among global CIOs according to independent surveys conducted by 
Morgan Stanley (Togut & Bloomberg, 2003) and Deloitte & Touche/IDG (Achieving, Measuring, and 
Communicating IT Value, 2002).  

Much of the pressure to add new modules to their ERP systems seems to arise about six to 12 months after 
an organization has gone live with its initial ERP implementation (Beatty & Williams, 2006). In that analysis, 
the authors listed some of best practices for ERP upgrades. The finding that was listed as a big influence is the 
focus to un-customize the customizations and to focus on the usage of the out-of-the-box functionalities. As it 
has been indicated (Dittrich, Vaucouleur, & Giff, 2009) this is not always possible (e.g., a heavily customized 
ERP systems resulting from a company working in country or business area that has not been localized yet from 
process side).  

One of the principles of agile software development (Fowler & Highsmith, 2001) is “Responding to change 
over following a plan”. In order to adapt this principles we must plan to change. All agile methodologies have 
built-in processes to change their plans at regular intervals based on feedback from the customer or customer 
proxy. Their plans are designed to always deliver the highest business value first. One concrete agile artifact that 
is relevant for this paper is product backlog from Scrum (Schwaber K. , 2004). It basically shows the ordered 
list of requirements for the system or product being developed by business value for the company (Schwaber K. 
, 2004). It is also adapted for change and evolves as the product and the environment in which it will be used 
evolves (management constantly changes it to identify what the product needs to be appropriate, competitive, 
and useful). 

METHODOLOGY 

The ERP system that we have analyzed in this paper (Dynamics AX, shown in Figure Figure 1) has solid 
technical support for some of agile principles. We will first show some functionalities which are easily 
accessibility and configurable. 

For Continuous Integration (CI) it supports Team Foundation Server, but also out-of-the-box Version 
Control System (VCS) which we will analyze in agile context. This VCS has some form of code check-in 
policies. It can reject code which has compiler errors or warnings, the code which contains TODO items and the 
code which contains best practice violations. In SAP ERP, by contrast, VCS issues proved to be very bad for 
agile (Meszaros & Aston, 2007). 

Best practices are a form of static code analysis, which is performed without executing the programs (in 
most cases the analysis is performed on source code). Simply by focusing on correcting defects earlier (during 
the creation of code) rather than later in a project, one can cut development costs and schedules by factors of 
two or more (McConnell, 2004). There are about 350 rules on the cumulative development experience of this 
ERP system, which in turn are based on general good software development guidelines.  

It also supports test cases which are written in its proprietary language, but are very ERP specific (support 
for different isolation levels like running tests in newly created business entity only for duration of the test). This 
further enhances CI support because VCS system can be configured to run a test project after every check-in and 
reject the code if it fails the tests. 

A real wealth of useful information can be found in ERP’s meta-model and in its runtime. One of the 
reasons this ERP uses meta-model is so that it can work with both Oracle and Sql Server . Besides this it 
contains model element definition of the whole ERP system. We have developed tools that harness and combine 
this information with other sources and have identified following aspects that help support agile software 
development for ERP systems:  

1. Number of model elements by layer and type  

2. Number of model elements by modules/business areas and layer  

3. Usage frequency of elements by layer  

In the following sections we give a more detailed view of these aspects through a detailed analysis of each of 
this aspects with the sample data shown for a retail/wholesales company operating in several countries.  

Number of model elements by layer and type 

Most of the existing research (e.g. (Beatty & Williams, 2006) (Nah & Delgado, 2006)) suggests the importance 
of avoiding customizations as much as possible. Our goal is to identify where the customizations are and to see 
how we can plan for change.  

In order to do so, an aspect which focuses on identifying model elements that have the most customizations 
is introduced. Each element of Dynamics AX meta-model has a property called layer. This property indicates if 
the element is created by the vendor (Microsoft), by a partner or by then end-user company. If an end-user 
company’s developer makes a modification to an element that is made by vendor (SYS layer) or by partner (e.g. 



Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

4 

BUS and VAR layers) its definition is copied to end-user layer (e.g. USR and USP layer). This end-user layer is 
the top layer. The partner modifications are in the middle layers, and vendor layers are at the bottom. Based of 
layer location of specific model element, we can see if the element is vendor original or partner or end-user.  

The meta-model contains several different model element types (tables, classes, class methods, menus, etc.). 
Their distribution over different application layers can be analyzed in order to see layer location of 
customizations.  

Figure Error! Reference source not found. shows different model element types and their distribution over 
layers. The number of elements for each type is shown as vertical axis. Types with most elements in total are 
shown as the ones on top of Figure Error! Reference source not found. (i.e. Class methods). The layers are 
shown as horizontal axis and have been grouped and sorted in hierarchical order, as used by the application 
layer system mentioned before. For brevity, some element types which do not have customizations are not 
shown.  

  

 
Figure 2: Element Type over Layer distribution 

From Figure Error! Reference source not found. one can see that in sample data shown most of the 
customizations are located in the end-user layers (USR, USP). There are a number of customizations done by 
partners located at BUS and VAR layers. The most common customization method at end-user layers (USR, 
USP) was the modification of class methods, which is a way to customize the processes. This kind of 
customization is more widely present at end-user layers than at partner layers in respect to element types. 
Vendor (SYS) layer shows wide usage class methods, which is almost equally common as in end-user layers. 
The second most important customization was the creation of modification of table fields and it was equally 
done at end-user and partner layers. From this two element types and layer location aspects it can be concluded 
that in this sample the need for customizations was mostly process oriented, while existing data model didn’t 
need as many modifications in the code.  



Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

5 

Number of model elements by modules/business areas and layer 

A valuable insight is provided in form of the aspect that identifies business area that a group of model elements 
belongs to and makes a larger functional group. This is also called a module. This aspect is important as a 
general guideline about the most developed areas of ERP systems.  

Table 1 shows the distribution of tables by business areas (rows) and application layers (columns).   

Table 1: Business areas and layers 
Business area SYS BUS VAR USR USP Total 

 420 30 46 67 258 821 
Basic 357 4 1 3 10 375 

Ledger 301 2 3 6 7 319 
Inventory 217  7 9 13 246 

HRM 208 15   1 224 
Admin 153    4 157 

Customer 121  10 7 13 151 
Vendor 103  8 9 7 127 

  

In the first row, there are the tables that don’t have relevant attributes that determine business area properly set 
up. A company can try to remedy this on appropriate application layers where it has access (e.g. end-users at 
USR/USP layers). Most of these tables are in vendor (SYS) layer. Second row contains tables which are in basic 
area which supports all other areas.  

The third row contains tables related to ledger (general ledger) area, which form a core of financial 
transactions module. Fourth row contains inventory related tables which form core of inventory management or 
Supply Chain Management (SCM) module. Next row contains tables related to Human Resource Management 
(HRM).  

One very valuable insight comes from noting the ratio of number of tables in certain business area across 
different application layers. For instance it can be seen that the total number of tables in end-user layers 
(USR/USP) and partner layers (BUS/BAR) in customer area (or Accounts Receivable) and vendor area (or 
Accounts Payable) is highest compared to the number of tables for this area in vendor (SYS) layer. This 
indicates that the end-user company in this sample had most modifications in these modules. Other notable 
business area that was heavily customized is inventory management.  

Usage frequency of elements by layer 

This aspect identifies whether a part of the system has been used and how often it has been used. For this 
purpose the original tool was modified to perform the analysis of the whole ERP system including all layers.  

Table 2 shows an analysis of a number of forms and their run count since ERP was installed and the layer 
where this form was last modified. Only a few sample rows have been listed, alphabetically ordered, save for 
last few rows which show forms without usage.   

Table 2: Element usage frequency 

Name Usage 
Count 

Layer 

Address 2275 USP 
AddressCountryRegion 74 SYS 

AddressCountryRegionGroupBLWI 0 SYS 
AddressSelect 2 BUS 
CustTripJour 0 USP 

CustTripJourTable 0 USP 
CustVendCreditInvoicingLookup 0 SYS 

  

Elements that have no usage (i.e. where Usage Count is zero) and which are created at appropriate application 
layers (e.g. USP for end-users) can probably be safely deleted, and will remove the amount of customizations 
and make upgrade process and maintenance easier. In Table 2 this would be the forms CustTripJour 
andCustTripJourTable.  



Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

6 

There are situations where there are elements that are from the lower layers (SYS) and which are not used 
(in Table 2 this would be the forms from last two rows). This indicates that there are some out-of-the-box 
functionalities of ERP system that are not needed. By identifying the parts of ERP system which are not used 
better view for future development and maintenance of ERP system is achieved. Big saving on upgrade effort is 
created by not analyzing these parts of the ERP system during the upgrade process. Other way for the company 
to leverage this information is in vendor/partner negotiations; dropping modules which are not used and 
appropriate licenses reduces upgrade costs. Module licenses which are not used can even be traded for other 
modules with some vendors.  

RESULTS 

The previous analysis can present a clear picture with a quantitative backing about the weak points of the ERP 
system. For most aspects, investing in correcting all this points could take a lot of time. The presented approach 
is an agile one. The request priority in the product backlog indicates the priority of improving the previously 
discovered weak points.  

For example, if the next iteration in software development includes working in business areas like HR, we 
would try to improve some weak points in this area. We would use the modified tools we have created to 
analyze the whole module for any weak points in form of the best practices violations, usage frequency, 
distribution of elements by layers, etc. This approach can provide a good overview of the current state of a part 
of an ERP system rather fast. The efforts needed to fix the identified weak points can be managed in a better 
way, and can even influence top requests in backlog in regard to their priority. Making improvements to class 
hierarchy to remedy this some of problematic situations could take a long time, so it might make sense to leave 
them ’as is’, until we have a request to make modifications to the part of the ERP system that these classes are 
related to.  

Continuous improvement by using the above approach would create a long term advantage for an upgrade of 
an ERP system. It would also influence the team to raise their awareness of good software development 
practices which are directly connected with quantified results from tools that they can use easily, so they would 
strive to create high quality software solutions that would reduce their work in maintenance.  

Another benefit is that the analysis of different aspects can be run on an ERP system or on parts of the ERP 
system maintained or developed by partner/vendor companies. We could define minimal software engineering 
acceptance criteria that a partner would need to reach in order for us to accept their solution. In long term this 
transfer of good practices downwards (in application layer sense) to partners and to vendors would help the 
company get future solutions which are more just-in-time like (with less time, less money paid and with higher 
quality) (Imai, 1986).  

Doing an upgrade is usually considered to cost 25-33% of the initial ERP implementation investment 
(Songini, 2000). Skipping one whole version can be considered an even worthier move that required greater 
analysis and planning. Using this approach has helped us perform upgrade from version 3 directly to version 5 
(Dynamics AX 2009) of the ERP system that we are using.  

As the software evolves, the analysis that was presented in this paper helps get benefits and improve the 
quality of an ERP system even after the initial analysis which was performed at previous periods. It also greatly 
helped in motivation of developers, by giving them a very productive environment where they can easily 
implement most of requests presented by management.  

CONCLUSIONS 

In the recent years there have been very few research results of applying agile methodologies to development 
and maintenance of ERP systems. The significance of this analysis derives from its different point of view - 
from technical perspective - and extends to connecting valuable and precisely quantifiable information with an 
agile development approach of ERP systems, mostly in response to the increased focus to development and 
maintenance of current ERP system determined by the economical breakdown. In difficult times of a global 
financial crisis this approach has proven as the most productive and extremely motivating for developers. 

Technical perspective was introduced trough different technical aspects. Using data from this analysis and 
benefiting from an agile approach has resulted in an exceedingly productive way of maintenance and 
implementation of new requests. It also enabled easier ERP system upgrade resulting in a worthy upgrade to 
second next version (from version 3 to version 5). 

The challenge is to continue to develop and maintain ERP system using technical perspective for agile and 
productive approach in the years yet to come. 

WORKS CITED 

(2002). Achieving, Measuring, and Communicating IT Value. techreport. 



Proceedings of DYNAA 2012                                                                                                                                                                                  Vol. 3, No.1 

7 

(2010). Magic Quadrant for ERP for Product-Centric Midmarket Companies. techreport. 
Beatty, R. C., & Williams, C. D. (2006). ERP II: best practices for successfully implementing an ERP upgrade. 

Communications of the ACM, 49, 105--109. 
Beck, K. (2001). Extreme programming explained: embrace change. Addison-Wesley. 
Chidamber, S. R., & Kemerer, C. F. (1991). Towards a metrics suite for object oriented design., 26, pp. 197--

211. 
Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. Software Engineering, 

IEEE Transactions on, 20, 476--493. 
Cockburn, A. (2004). Crystal clear: a human-powered methodology for small teams. Addison-Wesley 

Professional. 
Cockburn, A. (2006). Agile Software Development: The Cooperative Game (Agile Software Development 

Series). Addison-Wesley Professional. 
Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. IEEE Computer, 34, 131-

133. 
Dittrich, Y., Vaucouleur, S., & Giff, S. (2009). ERP Customization as Software Engineering: Knowledge 

Sharing and Cooperation. Software, IEEE, 26, 41--47. 
Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9, 28--35. 
Henderson-Sellers, B. (1996). Object-oriented metrics: measures of complexity. Prentice Hall. 
Hitz, M., & Montazeri, B. (1995). Measuring coupling and cohesion in object-oriented systems., 50, pp. 75--76. 
Imai, M. (1986). Kaizen: The key to Japans competitive success (Vol. 4). McGraw-Hill New York. 
Jovicic, B., & Vlajic, S. (2009). Design Patterns Application in the ERP Systems Improvements. Information 

Systems Development, 451-459. 
Markus, M., & Tanis, C. (2000). The enterprise systems experience - from adoption to success. In Framing the 

domains of IT research: Glimpsing the future through the past. 
McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering, 308--320. 
McConnell, S. (2004). Professional software development. 
Meszaros, G., & Aston, J. (2007). Agile ERP: You don't know what you've got'till it's gone! AGILE 2007 (pp. 

143-149). IEEE Computer Society. 
(n.d.). Microsoft Dynamics AX 4.0. techreport. 
Nah, F. F., & Delgado, S. (2006). Critical success factors for enterprise resource planning implementation and 

upgrade. Journal of Computer Information Systems, 46, 99. 
Olsen, L. D., Pontoppidan, M. F., Skovgaard, H. J., Kaminski, T., Kumar, D., & Thomas, S. (2009). Inside 

Microsoft Dynamics AX 2009. Microsoft Press. 
Rosenberg, L. H., & Hyatt, L. E. (1997). Software quality metrics for object-oriented environments. Crosstalk 

Journal, April. 
Schwaber, K. (2004). Agile project management with Scrum (Vol. 7). Microsoft Press Redmond (Washington). 
Schwaber, K., & Beedle, M. (2002). Agile software development with scrum. Pearson Prentice-Hall. 
Shankar, C. & Bellefroid, V (2011) Microsoft Dynamics Sure Step 2010. Packt Publishing Birmingham UK. 
Songini, M. (2000). Users vent frustration over Oracle CRM/ERP upgrades. Computerworld, 34, 105. 
Togut, D. M., & Bloomberg, E. (2003). Morgan Stanley Research Report. techreport. 
Wallace, T. F., & Kremzar, M. H. (2001). ERP: making it happen: the implementers guide to success with 

enterprise resource planning. John Wiley & Sons Inc. 
Watson, A. H., McCabe, T. J., & Wallace, D. R. (1996). Structured testing: A testing methodology using the 

cyclomatic complexity metric. NIST special Publication, 500, 235. 
 
 


